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ABSTRACT

In the field of medical imaging, the generation of high-quality images has the potential to have profound implications for
diagnostic algorithms, training datasets, and educational tools. This project introduces the use Conditional Generative
Adversarial Network (CGAN) as well as a Super Resolution Generative Adversarial Network (SRGAN) to create highly realistic
chest X-ray images without concern for memory limitations, making it highly viable for large-scale applications. By using
established deep-learning methods, this study expands on previous works and puts the theoretical applications into a practical,
deployable model. By leveraging conditional labels, this approach creates new opportunities for enhancing medical diagnostics
and facilitating the training of medical students. While this model only analyzes its use for chest X-rays, with simple modifications
it has the potential to been generalized across a variety of fields.

Introduction
In recent years, the use of Generative Adversarial Networks (GANs) has emerged as a promising approach in the field of
artificial intelligence, particularly for the creation of synthetic, but realistic, images. These networks have shown great potential
ranging from artistic content creation to medical diagnostic applications. This paper explores the development and application
of a CGAN in connection with an SRGAN, specifically for the generation of chest X-ray images with different pathologies.
Leveraging the power of deep learning, the project aims to create a tool capable of producing highly realistic synthetic medical
images based on conditional inputs, to assist in medical training and diagnostics. Through this tool, we seek to demonstrate
how GANs could be fine-tuned for specific medical uses. The outcomes of this work have the potential to make a significant
impact on healthcare training, especially in environments with limited access to diverse imagery.

Related Work
GANs have emerged as a powerful tool for their ability to create high-quality images based on a dataset. However, their use for
creating actual images hasn’t been utilized heavily in the medical field, with the majority of subject matters being art, fashion,
or entertainment. Earlier work in the field, such as Radford et. al. (2015) with DCGANs, has demonstrated the power of
GANs for creating realistic images from random noise, showing the potential for more advanced applications1.

The application of medical image synthesis was greatly advanced with the introduction of CGANs, which allowed for the
generation of images based on specific class labels. The work of Odena et. al. (2016) specifically with AC-GANs (Auxillary
Classifier GAN) was a significant contribution to this domain, paving the way for more targeted and specific image generation
tasks which were especially valuable for use in the medical field2. Skandarani et. al. (2020) conducted an empirical study
testing GAN models for medical image synthesis. In this study, they tested a variety of GANs, but just analyzed the successes
and failures of each model, rather than using the models for a specific purpose3. While this work was influential, it was more
exploratory, and at the end, they called for research to be done regarding GANs that can account for different subtleties.

Building on these advancements, Bluthgen et al. (2024) introduced an approach for generating high-resolution synthetic
medical images using a diffusion model with adaptive noise sampling4 This technique provided a significant improvement in
generating photorealistic medical images with fine-grained details. Their findings demonstrated that adaptive noise control could
better capture nuanced features in medical imaging datasets, offering an alternative pathway for improving image synthesis
techniques.

Baur et. al. (2018) focused on the generation of realistic images of skin lesions using GANs5. This study demonstrated that
GANs were capable of creating highly realistic skin lesion images, that can be used for training models or enhancing datasets.
While this work was significant, it focused on a relatively simple domain and didn’t involve any use of conditional labels.

In contrast, our work advances the application of GANs in the medical field by addressing complex challenges unexplored
by other studies. Our approach introduces the use of conditional labels to generate more complex and diverse medical images.



Figure 1. Comparison of the original and preprocessed image. The image on the left represents the original input from the
dataset, while image on the right shows the improved contrast and feature clarity as an effect of CLAHE preprocessing.

This enables the synthesis of medical images that aren’t only realistic but also highly relevant and applicable to a much wider
range of tasks. Notably, our methodology achieves this without requiring massive computational resources, making it one of
the few approaches capable of producing high-quality images efficiently.

Data

Our data was comprised of grayscale chest X-rays from the ChestX-ray8 dataset6. The images in this dataset were sourced
from the National Institute of Health, and labeled for one of 14 pathologies (or "No Findings"). Although the images were
diagnosed using Computer Aided Detection, the estimated accuracy for the diagnosis is >90%. Of the full dataset, we used
5,000 images diagnosed "No Findings", 5,000 diagnosed "Mass", and 5,000 diagnosed "Pneumonia". Each pathology class was
then assigned a numerical label, with 0 being "No Finding", 1 being "Mass", and 2 being "Pneumonia". These labels were used
as conditional labels to be interpreted by the CGAN.

The images were then resized from 1024x1024 resolution to a set of 512x512 images, and a set of 128x128 due to computing
limitations, while maintaining clarity needed for model training. To further enhance the quality and detail within each image,
the images were pre-processed using Contrast Limited Adaptive Histogram Equalization (CLAHE). This process boosts local
contrast, making subtle variations more prominent and aiding the models in detecting characteristics for each pathology. The
improvements in clarity after applying CLAHE can be seen in Figure 1.

Methods
This study implemented a Conditional Generative Adversarial Network (CGAN) using PyTorch, to generate synthetic 128x128
gray scale chest X-ray images based on three labeled pathologies (No Finding, Mass, Pneumonia). The CGAN architecture
expands on the basic GAN framework by introducing a label input, allowing the model to control the pathology types for
images generated. The GAN structure contains two components: a generator and a discriminator, engaged in an adversarial
game.

The generator receives noise tensors, sampled from a Gaussian distribution, with assigned conditional labels to represent the
different pathologies. These tensors are then put through multiple convolutional networks to reach the target resolution, through
layers of up-sampling then activation. For our activation we chose LeakyReLu within both the generator and discriminator, to
prevent "dead neurons." Dead neurons arrive when neurons consistently output zero across multiple training iterations, which is
usually caused by standard ReLu functions due to their output of 0 for negative inputs. To prevent this, LeakyReLu applies a
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Figure 2. Basic structure of the Conditional GAN model. This diagram shows the generator and discriminator with their
respective input sources and processing layers.

small slope α to negative values, allowing gradients even with negative input. This can be represented mathematically below:

f (x) =

{
x x > 0
αx x ≤ 0

(1)

Here x > 0 represents the positive input region, where the gradients are unchanged, where x ≤ 0 represents the negative
input region, where the gradients are modified slightly by α rather than the typical 0 by normal ReLu.

The discriminator, in contrast, serves as a binary classifier with conditional input, distinguishing between real images
as 1, and fake images as 0, given the conditional label. The discriminator goes through layers of down-sampling, activation
(LeakyReLu), and dropout (to prevent mode collapse). Mode collapse occurs when the discriminator becomes too strong, and
the generator begins to focus on a certain set of patterns, preventing diversity and ultimately hurting the learning. Dropout
prevents this by dropping units with a certain probability, weakening the discriminator. The overall structure of the
Conditional GAN model is depicted in Figure 2. This diagram outlines the flow of conditional inputs and noise tensors, and
how they are processed through each layer in the generator and discriminator.
The theoretical foundation of GANs is rooted in game theory, with the conditional additional only slightly modifying the
process. This process can be modeled as a minimax operation, where the generator and discriminator aim to minimize their
own objective functions in an adversarial game. The generator’s objective function (or generator loss) can be defined as:

Lg =−Ez∼pz,y∼py log[D(G(z | y))] (2)

where D(G(z | y)) represents the discriminator’s confidence that the generated image G(z | y) being judged as real, given the
conditional label y. Using this loss, the generator can adjust its parameters to maximize the probability that the images are
judged as real, making the generated images begin to appear more real and like the real images.

The discriminator’s objective function (or discriminator loss) can be defined as:

Ld =−Ex∼px(x) logD(x | y)−Ez∼pz,y∼py [log(1−D(G(z | y)))] (3)

where D(x | y) represents the discriminators confidence that real image x is real given conditional label y, and 1−D(G(z | y))
represents the discriminators confidence that the generated image G(z | y), conditioned on label y. Using this loss the discrimi-
nator can adjust its parameters to better judge real images as real, and fake images as fake, making it harder for the generator to
fool the discriminator effectively making the generator need to produce more "real looking" images.

Having defined the conditional loss functions for both our generator and our discriminator, we can formalize this objec-
tive into one adversarial function. The discriminator D aims to maximize its accuracy in distinguishing real images as real
and fake images as fake, maximizing −Ld . The generator aims to fool the discriminator, producing synthetic images that are
distinguished as real, effectively maximizing Ld , while minimizing Lg. This adversarial objective of G and D allows us to
derive a conditional adversarial objective function, which can be written as a minimax game:

min
G

max
D

Ex,y∼pdata [logD(x | y)]+Ez∼pz,y∼py [log(1−D(G(z | y)))] (4)
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This function correctly shows the competition between G and D, with D wanting to maximize the likelihood of correctly
classifying images and G minimizing the likelihood of producing distinguishable fake images.

Training was carried out with an NVIDIA GeForce GTX 1050Ti with it taking around 12 hours to finish training (∼500
epochs). After completing training, the discriminator and generator can be saved as individual models, without the need for any
other structure. While the generator can create images alone, by passing generated images through the discriminator again with
a "real threshold", we are able to further ensure the images are accurate, as they have to be marked real by the discriminator
again.

With our CGAN trained and able to create 128x128 images, we created an SRGAN to up-sample these images to a higher
resolution. This approach minimizes the computing capabilities necessary for training, as the models are able to be trained
separately, splitting the memory needed.

Similar to the CGAN, the SRGAN is trained with a generator and discriminator engaged in an adversarial game. To train
the SRGAN, we curated a dataset of paired low- and high-resolution images (still using the ChestX-ray8 dataset). The low-
resolution images were generated by down-sampling the high-resolution images, ensuring that the model learn to reconstruct
missing details.

The generator was then given a low-quality image and tasked with up-sampling it to a higher resolution image. The
discriminator then distinguishes between the generated high-resolution images and the real high-resolution images, returning a
probability score that guides the generator in improving the realism of its outputs.

In summary, this study implemented a CGAN to generate pathology-specific synthetic chest X-ray images and an SRGAN
to enhance their resolution. By training these models separately, we were able to optimize computational efficiency while
maintaining high-quality outputs. The trained models provide a framework for generating high resolution pathology-labeled
chest X-rays, which can be utilized for a variety of applications.

Results
The combined CGAN and SRGAN model successfully generated synthetic chest X-ray images conditioned on 3 pathology
labels: No Findings, Mass, and Pneumonia. To visually estimate the performance of the model, we generated one synthetic
image per pathology and arranged them in a 2x3 grid (see Figure 3 below). Each image was generated based on the discriminator-
assessed "real threshold" of 0.9, indicating high confidence in the generated images’ authenticity. This generation process took
less than a second to complete. As a comparison, randomly selected real images for each pathology were placed below the
generated in Figure 3

Discussion
The CGAN-SRGAN model developed in this study presents a novel approach to generating high-resolution, condition-specific
synthetic chest X-ray images. By initially training a CGAN to create 128×128 images and subsequently upscaling them with an
SRGAN, this method significantly reduces computational demands while maintaining image realism. This approach enables
the creation of diverse, labeled datasets, which can be instrumental in training and validating diagnostic algorithms. The ability
to generate pathology-specific images enhances the diversity of training data, potentially improving the robustness of deep
learning models in real-world medical applications. Furthermore, since these images are entirely synthetic, they alleviate
concerns regarding patient privacy and data-sharing restrictions.

Beyond diagnostic model development, this synthetic imaging framework holds promise for medical education. By
generating an unlimited number of high-resolution images tailored to specific pathologies, medical students and radiologists-
in-training can gain exposure to a wider array of cases, including rare conditions that may be underrepresented in traditional
datasets. This ability to curate customized learning materials enhances the accessibility and effectiveness of medical training.

Despite these advantages, certain limitations must be acknowledged. The CGAN-generated images, while visually
convincing, may lack subtle anatomical details crucial for clinical interpretation. The reliance on the initial dataset also
introduces the risk of propagating existing biases or artifacts present in real X-ray collections. Additionally, while the SRGAN
enhances resolution, it does not inherently add new diagnostic information—it simply refines features inferred from the
lower-resolution input. Therefore, while these synthetic images may be useful for training and research purposes, caution
should be exercised before considering them for direct clinical application.

Future work should explore strategies to further enhance anatomical accuracy and diagnostic utility. This could include
training on 3D volumetric data, incorporating additional patient data such as age and sex to improve contextual accuracy, or
integrating domain-specific constraints to enforce anatomical consistency. Furthermore, expanding this methodology to other
imaging modalities, such as MRI or CT scans, could further demonstrate the general value of this approach in medical imaging.
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Figure 3. Comparison of real X-rays (top) with synthetic X-rays (bottom).
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Conclusion
This study presents a CGAN/SRGAN model that generates realistic, condition-specific synthetic chest X-rays, underscoring its
potential to assist in diagnostic and educational imaging in the medical field. While challenges remain in optimizing image
quality, and avoiding artifacts, this work provides a foundation for future innovations in medical synthetic imaging.
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